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Abstract— In this paper, we address the problem of energy
efficient packet scheduling in a wireless environment. We consider
a wireless transmitter which is limited by its finite battery
resource. Our objective is to design a transmission schedule that
maximizes battery lifetime subject to some delay constraints.
To achieve this, we exploit two previously unconnected ideas: (i)
Channel coding can be used to conserve energy by transmitting at
reduced power levels over longer durations; (ii) Electro-chemical
mechanisms in batteries allow them to recover energy during
idle periods. While the first idea favors extending transmission
durations, the second idea requires the transmitter to be idle to
allow for recovery. In other words, bursty packet transmissions
interspersed with idle periods extend battery life. Therefore, a
strategy which is based entirely on either one or the other idea is
not optimal. We provide a framework to merge the two ideas. We
consider two kinds of delay constraints, one a deadline constraint
and the other an average delay constraint and show that energy
aware scheduling strategies for both these scenarios can result
in significant energy savings.

Index Terms— Scheduling, power control, wireless LAN.

I. INTRODUCTION

W IRELESS networks hold the promise of ubiquitous
access to information. This promise has led to the

widespread deployment of wireless based voice and data
services exemplified by cellular networks and wireless local
area networks. In the last few years, there has also been
a concerted effort to harness wireless technology for such
diverse applications as disaster relief, home entertainment and
inventory management.
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The full potential of wireless networks is limited by their
dependence on energy sources with finite capacity. For exam-
ple, cell phones and laptops need to be recharged every now
and then from power outlets. In sensor networks deployed in
inhospitable terrain, it is often impossible to recharge dead bat-
teries and the network is rendered useless when the nodes run
out of energy. It follows that the greater the energy capacity
of the battery, the longer the run time of a wireless device. On
the other hand, the shrinking form factor of wireless devices
dictates that batteries be small in size and light weight thus
limiting their energy capacity. This problem is exacerbated by
the the fact that advances in battery technology have not kept
pace with progress in digital integration technology. Unlike
transistor density which has been doubling every 18 months to
the beat of Moore’s law, battery energy density has improved
only by a factor of 2 to 4 in the past 30 years and is expected
to improve by only 20% in the next four years [4].

In the last few years, a number of research efforts have
focused on energy conserving network protocols and architec-
tures for enhancing device lifetimes. These include low-power
digital and analog design as well as protocol enhancements at
every layer of the protocol stack. See [5] and [6] for a current
review of some of these approaches.

In this paper, we deal with the problem of designing
an energy aware transmission schedule for a wireless node
subject to some delay constraints. We do so by combining
two previously unconnected concepts, one involving the use
of channel coding [1] and the other which utilizes battery
recovery [2]. In [1], it was shown that instead of transmitting
packets at constant power for a fixed duration, channel coding
can be used to conserve energy by transmitting at reduced
power levels over longer durations . This idea favors extending
transmission durations for as long as possible. In [2], it
was observed that electro-chemical mechanisms in batteries
allow them to recover energy during idle periods. This idea
requires the transmitter to be idle to allow for recovery. In
other words, the device saves energy by transmitting in bursts
and recovering in the idle periods. Clearly the two energy
conserving ideas above are at variance with each other. Thus,
a strategy which is based entirely on either one or the other
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idea is not optimal. Note that delay constraints prohibit the
use of arbitrarily large transmission or idle times. In this paper
we address the following question: can these two concepts be
amicably merged to devise a delay constrained energy efficient
transmission schedule?

In [1], they observe that, in a variety of channel coding
situations, the energy required to transmit a bit is a strictly
convex and decreasing function of its transmission time. Using
this insight, they propose an optimal off-line lazy scheduling
policy. The policy is off-line in the sense that the arrival
times of all the packets in a bounded interval (0, T ) are
known a priori. The aim of the policy is to schedule all
departures before the deadline T . They contend that, for
energy consumption to be minimized, a transmitter should
attempt to transmit a packet for as long as possible subject to
the deadline constraint, T . Motivated by the off-line analysis,
they propose an online algorithm which they show to be near
optimal. They then consider the problem of scheduling packets
over an infinite time horizon with an average queuing delay
constraint. They favorably compare a certain heuristically
derived scheduling policy with a constant service policy that
results in the same average delay. However they leave open
the problem of devising an optimal scheduling policy for an
arbitrary average delay constraint.

In [2], [3], [14], the electro-chemical behavior of batteries
has been studied in the context of wireless devices. Batteries
deliver power due to the electro-chemical reactions that oc-
cur between the electrodes and the active material near the
electrodes. This leads to a depletion of active mass near the
electrode which sets up a concentration gradient in the interior
of the battery. Consequently, when the battery is idle, active
mass diffuses towards the electrodes replenishing lost charge.
This is called the Recovery effect. A stochastic model for
charge recovery has been proposed which tracks the evolution
of the energy state of a battery. This model can be used to
track the amount of energy restored during an idle period.

The experimental justification for using the battery recovery
mechanism for improved energy performance can be found
in results reported in [7], where the capacity, energy and
delivered power of Lithium ion cells has been studied under
different high-power discharge profiles. These results show
that batteries operating in discontinuous mode can deliver
twice as much energy as when discharged using a constant
current. For example, an E-tech 250 mAH battery delivered
2.78 KJ of energy when pulsed using a 20% duty cycle. In
contrast it delivered only 1.3619 KJ of energy under constant
current discharge. In both cases, the current level was 8 times
the rated current. The authors of [7] also identify the discharge
regimes where the stochastic model proposed by [2] is valid.

In this paper, we consider a single wireless device trans-
mitting packets over a wireless channel. We assume that
the device has sole access over the channel and there are
no collisions or other types of contention for the channel
from other wireless devices. For example, it could be a
cell phone transmitting to a base station using its unique
assigned channel. We also assume that for each power level,
the transmitter can adaptively transmit with capacity achieving
codes at that power level. We consider two kinds of delay
constraints, a deadline constraint and an average delay con-

straint. The deadline constraint could model, for instance, a
battery operated device that is periodically recharged. It is
desirable that the battery not die before a scheduled recharge.
The average delay constraint can be thought of as a Quality
of Service (QoS) guarantee. In this case, it is of interest to
consider strategies which can extend battery lifetime and still
provide the required service. Our model is general and can
be applied to any underlying physical layer scheme including
FDMA, TDMA and spread spectrum systems.

We first tackle the deadline constraint problem by adapting
the optimal off line scheduling policy in [1] to a discrete-time
scenario. We then assume a simple battery recovery model and
derive the optimal transmission strategy. Our results show that
energy savings of more than 50% are feasible by accounting
for energy recovery.

Next, the average delay case is considered. We assume that,
packets arrive at a transmitter’s queue according to a Poisson
process. Packets are served on a first come, first serve basis.
In order to solve the open problem posed in [1], viz. the
design of an energy optimal scheduling policy for an average
delay constraint, we use Constrained Dynamic Programming
(CDP) [10], [13], to devise a transmission strategy using only
the channel coding concept and ignoring battery dynamics.
The resulting transmission policy is called the Non-Battery
Aware (NBA) policy. Then, a stochastic model of battery
behavior based on [2] is used. This allows the transmitter
to conserve energy by scheduling idle periods after a trans-
mission. However, incorporating a realistic model of energy
recovery along with the channel coding concept in the CDP
framework is computationally prohibitive. We resolve this
by making simplifying assumptions about battery recovery.
This leads to policies which may be sub-optimal. We call
these the Battery Aware (BA) policies. We then construct a
simulation model with a realistic battery component. For a
given average delay constraint, the BA and NBA policies are
evaluated against a Constant Service (CS) policy using our
simulation model. With tight delay constraints, the NBA policy
can extend lifetime by as much as 40% over a CS policy. With
the BA policy, this figure can improve up to 90% for low
arrival rates. As the delay constraint is relaxed, the CS policy
is seen to do almost as well as the NBA policy. However, the
gains from the BA policy become more substantial for low
arrival rates.

In Section II, we address the problem of optimal scheduling
in discrete-time with a deadline constraint and devise policies
with and without battery recovery. In Section III, we formulate
the delay constrained optimization problem and consider a
more realistic battery model. In Section IV, we discuss some
results. Finally we provide conclusions and directions for
further research in Section V.

II. OPTIMAL OFF-LINE SCHEDULE WITH DEADLINE

CONSTRAINT

In this section, we first recast the off line scheduling scheme
proposed in [1] in a discrete-time framework. We start out
by showing how channel coding can conserve energy in
an AWGN channel at the expense of lower rates (higher
transmission durations). Let e(t) be the energy required to
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Fig. 1. Energy versus Time, derived from equation (3).

transmit a bit for a duration t. Consider the case of optimal
channel coding for the AWGN case. Assume each channel use
or transmission lasts for one unit of time. From Shannon’s
channel capacity theorem, we have

C =
1
2

log2

(
1 +

P

N

)
bits/transmission (1)

where C is the optimal capacity, given an average power
constraint P and noise power N . If one assumes the use of a
capacity achieving code, the number of transmissions required
to transmit 1 bit is given by

s =
1
C

(2)

Assuming one transmission takes 1 unit of time, the energy
required to transmit 1 bit is then given by

e(t) = tP

= tN(2
2
t − 1) (3)

This function is a non-negative and strictly decreasing
convex function (See Fig. 1). Other channel coding situations
lead to a similar result. It turns out that the strictly convexity
of e(t) can be exploited to devise an optimal schedule which
is independent of the specific nature of e(t) [1].

We consider a slotted system, with each slot of unit du-
ration. Assume that a transmitter needs to send M packets
in time [0, T ]. In other words, T is the deadline constraint.
The arrival times of the packets are given by ti, 1 ≤ i ≤M .
Arriving packets are placed in a buffer where they wait to be
transmitted. In our discrete time model, the ti’s can take only
integer values. The inter-arrival times are given by di. Define
dM = T−tM , and let −→τ = [τ1, τ2, ..., τM ] be the transmission
durations of the M packets. The τi’s are integers. All packets
must be transmitted before T . A transmission schedule is said
to be feasible if

1) For 1 ≤ k < M ,
∑k

i=1 τi ≥
∑k

i=1 di

2)
∑M

i=1 τi ≤ T

The above conditions imply that no packet is transmitted
before it arrives and all packets meet the deadline constraint T .

A transmission schedule is said to be optimal, if it consumes
the least amount of energy over all other feasible transmission
schedules. Let w(−→τ ) be the energy consumed using schedule−→τ . Then

w(−→τ ) =
M∑

k=1

e(τk) (4)

Note that, for a schedule to be optimal,
∑M

i=1 τi = T .
Otherwise, one can increase the transmission time of the last
packet. This would result in a feasible schedule consuming
less energy than the optimal one, which is a contradiction.

We now describe the optimal scheduling policy. The proof
of optimality is very similar to that in [1] and is omitted for
the sake of brevity. Let k0 = 0 and define

m1 = max
k∈{1,...,M}

{
1
k

k∑
i=1

di

}

k1 = max

{
k :

1
k

k∑
i=1

di = m1

}
For j ≥ 1, we define

mj+1 = max
k∈{1,...,M−kj}

{
1
k

k∑
i=1

dkj+i

}

kj+1 = kj + max

{
k :

1
k

k∑
i=1

dkj+i = mj+1

}
Suppose mj is not an integer. Then it will be of the form

mj = m′
j +

rj
kj − kj−1

m′
j ∈ N and

1 ≤ rj ≤ kj − kj−1

Here N is the set of positive integers.
Theorem 1: Suppose energy spent is a strictly convex and

decreasing function of transmission time. Then, the optimal
schedule

−→
τ∗ is given as follows:

Suppose kj−1 < i ≤ kj . Then

τ∗i =

⎧⎨⎩
mj mj ∈ N

m′
j + 1 kj−1 + 1 ≤ i ≤ kj−1 + rj
m′

j kj−1 + rj + 1 ≤ i ≤ kj

(5)

Proof: See [1] for details.
The basic intuition is to equalize transmission times as far as
possible without violating causality and deadline constraints.
[1] also proposes some extensions to the online case, when
the arrival epochs are unknown. However, this is still an open
problem and we omit further discussion. We show next how
the formalism presented so far can be extended when energy
recovery is taken into account.

A. Energy Recovery

In this section, we consider a simple model for energy
recovery to illustrate the need to account for this phenomenon.
In later sections, we will consider more realistic models of
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battery behavior. Here we assume that the battery recovery
process is a strictly increasing concave function of idle time.
This assumption is a good first approximation as borne out in
the experimental figures reported in [9]. In order to prolong
battery lifetime, we devise transmission schedules wherein,
each packet transmission is followed by an idle duration.
Experimental results in [7] show that such an on off discharge
process can prolong battery lifetime significantly. Let v(τ)
be the energy recovered in time τ . In order to describe a
transmission schedule, we need to state both the actual time
spent in transmission and the time spent in recovery. Let τi, si

and τi − si be the total transmission time, actual transmission
time and recovery time for packet i, respectively. Note that
given τi, one can find an optimal division of τi into si and
τi − si such that the least amount of energy is expended.
Thus, for an optimal scheduling scheme, only the τi’s need to
be specified. Let z(τi) be the optimal energy spent when the
total transmission time is τi. We have,

z(τi) = inf
0≤x≤τi

e(x) − v(τi − x)

si = arg min
0≤x≤τi

e(x) − v(τi − x) (6)

In order to treat this problem using the framework devel-
oped in Section II, we use the following fact.

Lemma 1: Let f1, . . . , f2 be strictly convex functions on
Rn, and let

f(x) = inf{f1(x1) + . . .+ fm(xm)|xi ∈ Rn,

x1 + . . .+ xm = x}
Then f is a strictly convex function on Rn.

Proof: See [17].
Using Lemma 1, we see that z(τi) is strictly convex and
decreasing in τi. Hence, z(τ) plays the exact role of e(τ)
in the previous section. Thus the same theory holds and the
optimal sum of transmission and idle times, τi, can be derived
as before. The actual transmission and recovery times can then
be obtained by performing the minimization in (6).

B. Results

We assume that 10 arrivals occur and need to be scheduled
before a deadline T = 59. The first arrival occurs in the first
slot at t = 0. The arrival times of the packets are 0, 4, 11, 20,
27, 30, 31, 35, 44, 49. The inter-arrival times can be derived
from the above information. We assume an AWGN channel
with a noise power of 0.1. We consider a naive scheduling
scheme where the transmission durations are equated to the
inter-arrival times. The total energy consumed (without re-
covery) was found to be 1.7215 by using (3). For the optimal
scheme developed in Section II, the energy consumed without
energy recovery is equal to 1.563, an improvement of around
10%. We now factor in energy recovery using (6). The energy
recovered in time τ is assumed to be

v(τ) = α(1 − e−τ ) (7)

The energy recovery model considered here is very simple
and serves mainly to illustrate the gains that can accrue
by remaining idle. This is a concave increasing function as
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Fig. 2. Optimal scheduling policy. This policy includes energy recovery. The
darker bars represent the sleep duration after packet transmission.

required and is similar in form to the experimental results
shown in [9]. We took the parameter α to be 0.1 to fit the
curve in [9]. With the above assumption, the energy consumed
was found to be 0.7981, an improvement of around 54% over
the naive scheme. The optimal scheme is shown in Fig. 2.

It can be seen that the optimal policy involves recovering
for some time after transmitting. For example, the first packet
is transmitted in 4 slots. The transmitter is then idle for 3 slots
before serving the second packet. If energy recovery were not
taken into account, the first packet would be transmitted over
7 slots.

III. DELAY CONSTRAINED SCHEDULING

In this section we consider the problem of optimal schedul-
ing given an average delay constraint. We initially ignore
battery dynamics and assume that there is no energy recovery.
We use the channel coding concept to devise an optimal
transmission strategy for an average delay constraint using
CDP [10], [11]. This solves the open problem in [1]. We
then incorporate energy recovery in the model and provide
some heuristic methods to devise energy efficient transmission
schemes. These schemes are evaluated via simulation.

A. Model Description

We assume a discrete-time system. Packets arrive according
to a Poisson process with rate λ. All the arrivals in a slot are
assumed to occur at the beginning of the slot. At the end
of a transmission, the transmitter schedules the Head of Line
(HOL) packet if the buffer is non-empty. This transmission
duration depends on the buffer occupancy. Intuitively, if the
buffer occupancy is low, the transmitter can schedule longer
service periods and still meet the delay constraint. If the
buffer is crowded, the transmitter will attempt to rapidly serve
packets. An average delay constraint can be recast as an
average ”number in system” constraint using Little’s law. In
the formulation below, we find it convenient to use the average
number of packets in the system as the constraint.
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In order to describe the system in terms of a discrete-time
Markov chain, we need to track two variables, viz., the buffer
occupancy and the state of the service process. We model
our system as a two dimensional process {Xn, Sn}, where
Xn is the buffer occupancy at time n and Sn is the state
of service at time n. It represents the time left to complete
the present transmission. For example, the system is in state
{5, 3} when the buffer occupancy (including the packet in
service) is 5 and the time remaining for completion of service
is 3 slots. The state {5, 0} represents a decision epoch. The
server has just completed service and has to decide on the
transmission duration of the HOL packet. In order to apply
the results of Section III-B, we need to make the state space
and action space finite. We do so by restricting the buffer to be
of length B. By using the method of approximating sequences,
we solve for the infinite buffer case. The action space A =
{0, 1, . . . , T} is simply the number of slots used for service.
Note that restricting T to be finite is not a serious limitation
because delay constraints and stability requirements preclude
high values of T . When service is in progress, the only valid
action is the null action denoted by 0. We assume that energy
costs are incurred only at the beginning of transmission. For a
state {x, s} and action a, the energy cost, C(x, s, a) is given
as (3),

C(x, s, a) =
{

0 s �= 0, ∀a ∈ A

aN(2
2
a − 1) s = 0, a ∈ A\{0} (8)

The delay cost represented by buffer occupancy is given as

D(x, s, a) = x (9)

Let P{x,s}{x′,s′}(a) be the probability of transiting from
state {x, s} to state {x′, s′} when action a is taken. Let pq, 0 ≤
q ≤ B−1 be the probability of q arrivals in one slot and pB(k)
be the probability of B−k or more arrivals in a slot. We have

pq = e−λλ
q

q!

pB(k) = 1 −
B−k−1∑

i=0

pi (10)

The transition probabilities are given as follows

P{0,0}{q,0}(0) =
{

pq 0 ≤ q < B
pB(0) q = B

P{k,1}{k+q−1,0}(0) =
{

pq 0 ≤ q < B − k + 1
pB(k − 1) q = B − k + 1

P{k,j}{k+q,j−1}(0) =
{

pq 0 ≤ q < B − k
pB(k) q = B − k

P{k,0}{k+q−1,0}(1) =
{

pq 0 ≤ q < B − k + 1
pB(k − 1) q = B − k + 1

P{k,0}{k+q,a−1}(a) =

⎧⎨⎩
pq 0 ≤ q < B − k

a ∈ {2, . . . , T}
pB(k) q = B − k

(11)

We note here that by restricting the buffer length to B,
we are not dropping packets but are transferring the excess

probability to the states with buffer occupancy B. This is
merely a mathematical trick to solve for the infinite buffer
case where there are no packet losses. See [10] for further
details.

B. Constrained Dynamic Programming

Our discussion in this section closely follows the one
in [10]. Consider a stochastic process in discrete time. We
assume that this process can take at most a countable number
of states denoted by S. For each state s ∈ S, a finite set of
actions represented by the set A(s) are possible. We associate
two non-negative costs with each state-action pair, C(s, a) and
D(s, a), a ∈ A(s). Positivity is not required as long as the
costs are bounded below. Let π be some scheduling policy.
Let Xn and an be the state and action chosen at time n
respectively. Then we define the following metrics

Gπ(s) = lim sup
n→∞

1
n
Eπ

(
n−1∑
i=0

C(Xn, an)|X0 = s

)

Kπ(s) = lim sup
n→∞

1
n
Eπ

(
n−1∑
i=0

D(Xn, an)|X0 = s

)
(12)

Assume there is a constraint that Kπ cannot exceed K . A
policy π said to be feasible if Kπ(s) ≤ K, ∀s ∈ S. Let Δ be
the set of all policies. The constrained optimization problem
is to determine a policy π∗ such that

Gπ∗(s) = inf
π∈Δ

Gπ(s), ∀s ∈ S

Subject to:

Kπ(s) ≤ K ∀s ∈ S (13)

The solution approach in [10] is to transform a CDP problem
into an unconstrained dynamic programming problem which
can then be solved using well known techniques such as the
Value Iteration Algorithm which assume a finite state space.

In order to solve (13), the method of Lagrange multipliers
is employed. Let λ ∈ [0,∞). The Lagrangian, for a policy π
is defined as follows.

Jπ(s, λ) =

lim sup
n→∞

1
n
Eπ

(
n−1∑
i=0

{C(Xi, ai) + λD(Xi, ai)}|X0 = s

)
≤ Gπ(s) + λKπ(s), ∀s ∈ S (14)

We define

J(s, λ) = inf
π
Jπ(s, λ) (15)

We say that a policy π is λ-optimal if Jπ(s, λ) = J(s, λ), ∀s ∈
S. We state, without proof, the following Lemma. Details can
be found in [10].

Lemma 2: If there exists λ > 0 and a λ-optimal policy π
such that Gπ(s) <∞ and Kπ(s) = K, ∀s ∈ S, then π solves
the constrained optimization problem (13).
We state now the key result of this section from [10].

Theorem 2: If S is finite and J(s, λ) ≡ J(λ), ∀λ > 0 and
∀s ∈ S, then the following is true
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Fig. 3. A sample plot of Jλ versus λ. It is a piecewise linear increasing
concave function with decreasing slope and a finite number of breakpoints.
The K’s denote the slopes of various segments and the G’s are the respective
intercepts.

1) J(λ) is an increasing, continuous, and concave function
consisting of finitely many linear segments each with a
non-negative intercept. See Fig. 3.

2) The unique breakpoints 0 = λ0 < λ1 < . . . < λb define
the b + 1 intervals [λ0, λ1], . . . , [λb−1, λb], [λb,∞), on
each of which J(λ)is linear.

3) Let J(λ) = Gj + λKj , for λ ∈ [λj , λj+1]. Then K0 >
K1 > . . .Kb and G0 < G1 < . . . < Gb.

4) Assume that a stationary policy e is λ∗ optimal for
some λ∗ ∈ (λj , λj+1), then Ge(s) = Gj and Ke(s) =
Kj, ∀s ∈ S. Hence e is optimal for λ ∈ [λj , λj+1] and
is said to be essential on [λj , λj+1].

We now provide some intuition for Theorem 2. Since the
action and state spaces are finite, there are only a finite
number of policies. For any policy e, Je(s, λ) is a straight
line with slope Ke(s), intersecting the abscissa at Ge(s). A
little thought shows that minimizing over these straight lines
(or policies) results in a curve as in Fig. 3. This is the basis
of the proof for the first three properties of Theorem 2. To see
why the last property is true, assume that the policy e is λ∗

optimal for some λ∗ ∈ (λj , λj+1). This implies that Je(i, λ∗)
is equal to J(λ∗) at λ∗. Since the curve is linear in [λj , λj+1],
we have that J(λ) is the same as Je(i, λ) in this interval.

We now describe the use of Lemma 2 and Theorem 2 to
solve the problem given by (13). If the constraint K = Kj for
some j, then we are done. For, using part (3) of Theorem 2
and the Value Iteration Algorithm [11], a stationary policy e,
essential in λ∗ ∈ (λj , λj+1) can be found. This policy, by
Lemma (2) solves problem (13). Suppose Kj < K < Kj+1.
Consider a policy which randomly combines two policies, one
essential in the interval [λj , λj+1] and the other essential in
the interval [λj+1, λj+2]. The randomizing probability p is
chosen such that pKj + (1− p)Kj+1 = K . Again by Lemma
(2), this policy solves problem (13).

The above methodology can be used to derive the energy
optimal scheduling policy for an arbitrary average delay
constraint. This is the NBA (Non Battery Aware) policy.

C. Energy Recovery

We now incorporate energy recovery as well in our model
to derive the BA (Battery Aware) policy. Various electro-
chemical models have been proposed for different kinds
of batteries. In [18], for example, a Lithium insertion cell
has been considered. [14] provides experimental results for
Lithium coin cell batteries. These kind of batteries are often
used in mobile devices. In [2], [3], a stochastic recovery
model which approximates the electro-chemical behavior in
a battery has been proposed. The evolution of battery state
has been modeled as a stochastic process. Our battery model
has four parameters, L, M , ER and β. The charge delivered
under a constant discharge called the rated current until the
battery dies is called the nominal capacity denoted by M .
The total charge which the battery can potentially deliver is
called the theoretical capacity, L. The model we have used is
described as follows. The state of the battery represents the
energy state of the battery. The energy state is the amount of
active charge material near the electrodes of the battery. The
battery starts off in state M . When a packet is transmitted, the
battery transits to a reduced energy state determined by (3).
Energy is recovered when the transmitter is idle. In an idle slot,
the battery recovers ER units of energy with probability β,
independent of state. The battery is considered dead when the
energy state is 0 or if L units of charge have been consumed.
It is clear that tracking the evolution of our model would
require knowledge of the energy state of the battery as well
as the amount of energy consumed. Thus incorporating energy
recovery in the CDP framework results in an explosion of state
space which makes the problem computationally intractable.
To resolve this, we propose a coarse model of energy recovery
to devise a scheduling policy which is possibly sub-optimal.
In our coarse model, for a value of the recovery probability,
β, we assume that the battery recovers ER ∗β units of energy
in every idle slot. Our coarse model has only two parameters,
ER and β. We assume that the battery never dies.

The scheduling policy determines the duration of transmis-
sion of the HOL packet and the recovery duration at the end
of transmission, for a given backlog. The state of the system is
represented by the triplet {x, s, r}, where {x, s} represents the
backlog and state of service as defined before and r represents
the remaining idle duration. For example, the state {5, 3, 4}
means that the backlog is 5, there are 3 slots remaining for
end of service and once the service is over, the transmitter will
sleep for 4 slots. The state {5, 0, 4} means that the transmitter
is idle and will resume service after 4 slots. The transition
probabilities can be derived in a similar fashion as before and
are omitted for the sake of brevity.

D. Discussion

Using the constrained dynamic programming methodology,
we were able to obtain an optimal NBA scheduling policy
and a possibly sub-optimal BA policy for a given arrival
rate and delay constraint. In order to meaningfully evaluate
the performance of the above policies, we compare them
with the most energy efficient CS policy that satisfies the
delay constraint. In our problem setting, these CS policies
can employ only a finite number of service durations. Hence
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arbitrary delay constraints cannot be satisfied exactly using
only CS policies. These policies will not be optimal by
Lemma 2. From the Pollaczek-Khintchine formula [12], we
can compute the average delay (WS) for a CS policy of
duration a as follows

WS = a+
λa2

2(1 − λa)
(16)

This can be used to determine the appropriate CS policy to
compare performance with.
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Fig. 4. Arrival Rate = 0.03, Average Delay Constraint = 1.5. Each curve
shows the number of recharges required per 100 CS policy recharges. The BA
policy is seen to outperform the NBA policy even for low values of recovery
probability.
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Fig. 5. Arrival Rate = 0.07, Average Delay Constraint = 1.5. Each curve
shows the number of recharges required per 100 CS policy recharges. For
stringent delay constraints, the NBA policy does much better than the CS
policy.

IV. RESULTS

We consider an AWGN channel with a noise power of 0.1.
To account for battery dynamics, we use the battery model
developed before. We set ER to be one-seventh the energy
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Fig. 6. Arrival Rate = 0.01, Average Delay Constraint = 1.5. Each curve
shows the number of recharges required per 100 CS policy recharges. As
arrival rate increases, the BA policy outperforms the NBA policy for high
values of β.

spent in transmitting a packet in one slot (e(1)/7). This is
motivated by the fact that systems like GSM employ a duty
cycle of 1 : 8. Also in [9], it has been shown that a battery
recovers completely in 22 ms after subjecting it to a discharge
for 3 ms. We assume that a battery starts out with its energy
level equal to the nominal capacity (M = 50). The theoretical
capacity is assumed to be 10 times the nominal capacity (L =
500). Every time the battery dies, we assume it is recharged
instantaneously. This allows us to compare the performance
of different policies. The optimal policy would require the
smallest number of recharges.

We consider different arrival rates and delay constraints.
For a given arrival rate and delay constraint, we consider
three scenarios. The first scenario is for a CS policy which
best meets the delay requirement. We then compute the NBA
and BA scheduling policies. Using our simulation model, we
compare these three policies for different battery models by
varying the recovery probability, β.

In Figs. 4, 5 and 6, we have considered three different
arrival rates for a fixed stringent delay constraint. Each curve
in these plots represents the number of recharges that would
be required for every 100 recharges with the appropriate
CS scheme. We observe that the NBA policy can result in
energy savings of up to 40% over the CS policy. The BA
policy does much better, saving as much as 90% over the
CS policy. However, we see that as the arrival rate increases,
higher values of the recovery probability (β) are required
for significant gain over the NBA policy. For lax delay
constraints, Fig.s 5 and 7 reveal that the NBA policy does not
do much better than the CS policy. For example, with a delay
constraint of 1.5 and an arrival rate of 0.07, the NBA policy
requires only 60 recharges for every 100 recharges with the
CS policy. If the delay constraint is relaxed to 5, the NBA
policy requires 90 recharges, a gain of only 10%. On the
other hand, the performance of the BA policy improves as
the delay constraint is relaxed. For a recovery probability of
0.7, and delay constraints of 1.5 and 5, 35 and 15 recharges
were respectively required for every 100 recharges with the
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Fig. 7. Arrival Rate = 0.07, Average Delay Constraint = 5.0. Each curve
shows the number of recharges required per 100 CS policy recharges. For
relaxed delay constraints, the CS policy and NBA policy are comparable.
The BA policy becomes more efficient as the recovery probability increases.
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Fig. 8. NBA Policy, Arrival Rate = 0.07, Average Delay Constraint = 5.

CS policy.
The trend in the results above can be explained as follows.

The energy consumption curve in (3) has a large slope in the
beginning and quickly flattens out as can be seen in Fig. 1.
For low arrival rates, the NBA policy attempts to transmit each
packet over very long durations without recovering. However,
the energy saved does not change much after a certain point
and the transmitter would have been better off by being idle
and recovering energy.

In Fig. 8, we plot the NBA policy for an arrival rate of
0.07 and an average delay constraint of 5 slots. In Fig. 9, we
plot the corresponding BA policy. For low values of backlog,
the transmitter schedules long recovery periods. On the other
hand, for the NBA policy, the transmitter schedules almost
uniformly long service periods. This prevents recovery and
the marginal gains from transmitting for longer periods are
not substantial.
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Fig. 9. BA Policy, Arrival Rate = 0.07, Average Delay Constraint = 5. The
darker bars represent the sleep durations after packet transmission.

V. CONCLUSIONS

In this paper, we addressed the problem of energy effi-
cient packet scheduling for a wireless transmitter powered by
a battery. We merged together two previously unconnected
concepts: (i) Channel coding can be used to conserve energy
by transmitting at reduced power levels over longer durations
and (ii) Electro-chemical mechanisms in batteries allow them
to recover energy during idle periods. Delay constraints pro-
hibit the use of arbitrarily large transmission or idle times.
Hence, we considered the problem of devising energy optimal
scheduling policies subject to delay constraints. Two kinds of
delay constraints were considered, one a deadline constraint
and the other an average delay constraint. For the deadline
constraint, an optimal off line scheduling policy in discrete-
time was devised assuming a simple model of energy recovery.
We realized gains of up to 50% over a naive scheduling
strategy.

Then, using the framework of Constrained Dynamic Pro-
gramming and ignoring battery dynamics, we were able to
solve the problem of devising an energy optimal schedule
for an average delay constraint. Next, we incorporated energy
recovery mechanisms in our model. However, realistic battery
models led to computationally prohibitive solution methods.
To address this, we used simplified battery models to devise
scheduling policies that exploit the gains due to channel
coding and battery recovery. We used simulation to compare
the performance of our policies with a CS policy. With tight
delay constraints, the NBA policy saved as much as 40% over
a CS policy. With the BA policy, this figure improves up to
90% for low arrival rates. As the delay constraint was relaxed,
the CS policy was seen to do almost as well as the NBA
policy. However, the gains from the BA policy became more
substantial for low arrival rates.

We can identify several directions for further research.
While recent experimental evidence [7] indicates that battery
recovery mechanisms can be exploited to draw more energy
from high performance batteries, battery and circuit behavior
need to be better understood to create accurate analytical
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models. We believe that the Poisson arrival model is, in some
sense, a lower bound on achievable performance. Since real
life traffic is more predictable, more gains appear feasible.
Lastly, it will be interesting to incorporate more realistic
channel models and coding mechanisms.
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